Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathbf{R b C u}_{\mathbf{2}} \mathbf{V S}_{\mathbf{4}}$

Ralf Tillinski, Christian Näther and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel,
Olshausenstraße 40, D-24098 Kiel, Germany
Correspondence e-mail: wbensch@ac.uni-kiel.de

Received 7 June 2000
Accepted 4 December 2000
The reaction of Cu and V in a $\mathrm{Rb}_{2} \mathrm{~S}_{5}$ melt yields black crystals of rubidium dicopper vanadium tetrasulfide, $\mathrm{RbCu}_{2} \mathrm{VS}_{4}$. The structure is comprised of $\left[\mathrm{Cu}_{2} \mathrm{VS}_{4}\right]^{-}$layers within the (010) plane which are separated by Rb^{+}cations. The layers consist of a network of edge- and corner-sharing $\left[\mathrm{VS}_{4}\right]$ and $\left[\mathrm{CuS}_{4}\right]$ tetrahedra parallel to (010). The optical band gap was determined as 1.45 eV .

Comment

In recent years, we systematically investigated the quaternary system $A / \mathrm{Cu} / \mathrm{V} / Q$ (with $A=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; Q=\mathrm{S}, \mathrm{Se}$), and prepared and characterized some new compounds with oneand two-dimensional structures, e.g. $\mathrm{K}_{2} \mathrm{CuVS}_{4}$ (Dürichen \& Bensch, 1996), $\mathrm{K}_{2} \mathrm{CuVSe}_{4}$ (Rumpf, Tillinski et al., 1997), $\mathrm{KCu}_{2} \mathrm{VS}_{4}$ (Bensch et al., 1996) and $\mathrm{KCu}_{2} \mathrm{VSe}_{4}$ (Tillinski et al., 1999).

The title compound, $\mathrm{RbCu}_{2} \mathrm{VS}_{4}$, is isostructural with $\mathrm{KCu}_{2} \mathrm{VS}_{4}, \mathrm{KCu}_{2} \mathrm{VSe}_{4}, \mathrm{NaCu}_{2} \mathrm{NbS}_{4}$ (Rumpf, Näther et al.,

Figure 1
The crystal structure of $\mathrm{RbCu}_{2} \mathrm{VS}_{4}$ viewed along the c axis.
1997) and $\mathrm{KCu}_{2} \mathrm{NbS}_{4}$ (Lu \& Ibers, 1991). The main feature of the layered structure is the existence of two-dimensional anionic $\left[\mathrm{Cu}_{2} \mathrm{VS}_{4}\right]^{-}$sheets within the (010) plane which are separated by Rb^{+}cations. These layers are comprised of $\left.[\mathrm{CuVS})_{4}\right]_{n}^{2 n-}$ chains of corner-sharing $\left[\mathrm{VS}_{4}\right]$ and $\left[\mathrm{CuS}_{4}\right]$ tetrahedra that are linked into the final sheets by $\left[\mathrm{CuS}_{4}\right]$ tetrahedra sharing edges between $\left[\mathrm{VS}_{4}\right]$ tetrahedra of neighbouring chains.

Three crystallographically unique metal atoms ($\mathrm{Cu} 1, \mathrm{Cu} 2$ and V) are found, each coordinated by four S atoms in a distorted tetrahedral environment. The average $M-S$ distances are 2.30 (1) \AA for $M=\mathrm{Cu}$ and 2.19 (1) \AA for $M=\mathrm{V}$, and lie within the normal range. The $\mathrm{S}-\mathrm{V}-\mathrm{S}$ angles are in the range $109.05(12)-109.9(3)^{\circ}$, indicating only very weak distortion of the $\left[\mathrm{VS}_{4}\right]$ tetrahedra. In contrast, the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles about the two independent Cu atoms indicate strong deviation from ideal tetrahedral geometry [103.03 (11)120.4 (2) ${ }^{\circ}$ for Cu 1 and 102.0 (2)-114.67 (12) ${ }^{\circ}$ for Cu 2]. Due to the large differences of the $\mathrm{Cu}-\mathrm{S}$ and $\mathrm{V}-\mathrm{S}$ bond lengths, the connection of the $\left[\mathrm{MS}_{4}\right]$ tetrahedra via common edges must introduce strong distortion mainly affecting the $\left[\mathrm{CuS}_{4}\right]$ tetrahedra. The $\mathrm{V}-\mathrm{Cu}$ distances are 2.703 (4), 2.709 (2) and 2.711 (4) \AA, indicating no metal-to-metal interactions. Each Rb^{+}cation is coordinated by nine S atoms. The resulting polyhedra may be described as distorted tricapped trigonal prisms. The $\mathrm{Rb}-\mathrm{S}$ distances range from 3.356 (9) to 3.713 (2) \AA, with an average value of 3.55 (1) \AA, in good agreement with the sum of the ionic radii. A UV-vis diffuse reflection spectrum was recorded in order to determine the optical band gap of $\mathrm{RbCu}_{2} \mathrm{VS}_{4}$; a value of 1.45 eV was found, which corresponds well with the black colour of the compound.

Experimental

$\mathrm{RbCu}_{2} \mathrm{VS}_{4}$ was prepared by the reaction of $\mathrm{Rb}_{2} \mathrm{~S}_{5}, \mathrm{Cu}$ and V in the ratio 6:2:1. $\mathrm{Rb}_{2} \mathrm{~S}_{5}$ was prepared from stoichiometric amounts of the elements in liquid ammonia under an argon atmosphere. The starting materials were mixed thoroughly in a dry box and sealed into a Pyrexglass ampoule, which was evacuated at $1.0 \times 10^{-3} \mathrm{mbar}(1 \mathrm{mbar}=$ 100 Pa). The ampoule was heated at 673 K for 6 d and cooled to

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{V}-\mathrm{S} 1$	$2.153(7)$	$\mathrm{Cu} 2-\mathrm{S} 3$	$2.300(4)$
$\mathrm{V}-\mathrm{S} 2$	$2.186(4)$	$\mathrm{Cu} 2-\mathrm{S} 2^{\mathrm{ii}}$	$2.302(3)$
$\mathrm{V}-\mathrm{S} 3$	$2.232(5)$	$\mathrm{Rb}-\mathrm{S} 1^{\mathrm{iii}}$	$3.356(9)$
$\mathrm{V}-\mathrm{Cu} 2^{\mathrm{i}}$	$2.703(4)$	$\mathrm{Rb}-\mathrm{S} 3^{\text {iv }}$	$3.453(4)$
$\mathrm{V}-\mathrm{Cu} 1$	$2.709(2)$	$\mathrm{Rb}-\mathrm{S} 1^{\text {v }}$	$3.458(10)$
$\mathrm{V}-\mathrm{Cu} 2$	$2.711(4)$	$\mathrm{Rb}-\mathrm{S} 2^{\text {vi }}$	$3.486(4)$
$\mathrm{Cu} 1-\mathrm{S} 2$	$2.290(3)$	$\mathrm{Rb}-\mathrm{S} 2^{\text {vii }}$	$3.645(4)$
$\mathrm{Cu} 1-\mathrm{S} 3$	$2.307(3)$	$\mathrm{Rb}-\mathrm{S} 1^{\text {vi }}$	$3.713(2)$
$\mathrm{Cu} 2-\mathrm{S} 1$	$2.288(6)$		
$\mathrm{S} 1-\mathrm{V}-\mathrm{S} 2^{\text {viii }}$	$109.88(14)$	$\mathrm{S} 3^{\mathrm{ix}}-\mathrm{Cu} 1-\mathrm{S} 3$	$106.7(2)$
$\mathrm{S} 2^{\text {viii }}-\mathrm{V}-\mathrm{S} 2$	$109.9(3)$	$\mathrm{V}-\mathrm{Cu} 1-\mathrm{V}^{\text {ix }}$	$175.0(2)$
$\mathrm{S} 1-\mathrm{V}-\mathrm{S} 3$	$109.1(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{S} 3$	$102.3(2)$
$\mathrm{S} 2^{\text {viii }}-\mathrm{V}-\mathrm{S} 3$	$109.05(12)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{S} 2^{\mathrm{ii}}$	$111.79(13)$
$\mathrm{S} 2-\mathrm{Cu} 1-\mathrm{S} 2^{\mathrm{ix}}$	$120.4(2)$	$\mathrm{S} 3-\mathrm{Cu} 2-\mathrm{S} 2^{\mathrm{ii}}$	$114.67(12)$
$\mathrm{S} 2-\mathrm{Cu} 1-\mathrm{S} 3^{\mathrm{ix}}$	$111.61(10)$	$\mathrm{S} 2^{\text {ii }}-\mathrm{Cu} 2-\mathrm{S} 2^{\text {vii }}$	$102.0(2)$
$\mathrm{S} 2^{\mathrm{ix}}-\mathrm{Cu} 1-\mathrm{S} 3^{\mathrm{ix}}$	$103.03(11)$	$\mathrm{V}^{\text {ii }}-\mathrm{Cu} 2-\mathrm{V}$	$177.58(14)$

[^0]
inorganic compounds

293 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$. The resulting melt was washed with dimethylformamide and diethyl ether. Finally, the residue was dried in a vacuum.

Crystal data

$\mathrm{RbCu}_{2} \mathrm{VS}_{4}$
$M_{r}=391.73$
Orthorhombic, Ama2
$a=7.382$ (3) A
$b=18.187$ (11) \AA
$c=5.413$ (2) \AA
$V=726.7(6) \AA^{3}$
$Z=4$
$D_{x}=3.580 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe AED-II four-circle diffractometer
$\omega-\theta$ scans
Absorption correction: empirical ($X E M P$ in SHELXTL/PC;
Siemens, 1990)
$T_{\text {min }}=0.290, T_{\text {max }}=0.345$
1230 measured reflections
628 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.078$
$S=1.039$
628 reflections
46 parameters

Mo $K \alpha$ radiation
Cell parameters from 10 reflections
$\theta=13-24^{\circ}$
$\mu=14.74 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, black
$0.08 \times 0.08 \times 0.07 \mathrm{~mm}$

483 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=24.97^{\circ}$
$h=0 \rightarrow 8$
$k=-21 \rightarrow 21$
$l=-6 \rightarrow 4$
4 standard reflections frequency: every 120 min intensity decay: negligible
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0374 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.66 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)

Flack parameter $=-0.01(3)$

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: CIFTAB in SHELXL97.

This work is supported by the state of Schleswig-Holstein.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1402). Services for accessing these data are described at the back of the journal.

References

Bensch, W., Dürichen, P. \& Weidlich, C. (1996). Z. Kristallogr. 211, 933.
Dürichen, P. \& Bensch, W. (1996). Eur. J. Solid State Inorg. Chem. 33, 309-320.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lu, Y.-J. \& Ibers, J. A. (1991). J. Solid State Chem. 94, 381-385.
Rumpf, C., Näther, C., Jeß, I. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1165-1177.
Rumpf, C., Tillinski, R., Näther, C., Dürichen, P., Jeß, I. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1187-1198.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconson, USA.
Stoe \& Cie (1992). DIF4 (Version 7.09X/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.
Tillinski, R., Näther, C. \& Bensch, W. (1999). Acta Cryst. C55, 1959-1961.

[^0]: Symmetry codes: (i) $x, y, 1+z$; (ii) $x, y, z-1$; (iii) $1-x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $1-x,-y, z$; (v) $1-x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $1+x, y, z$; (vii) $\frac{1}{2}-x, y, z-1$; (viii) $\frac{1}{2}-x, y, z$; (ix) $-x,-y, z$.

