Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

RbCu₂VS₄

Ralf Tillinski, Christian Näther and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany Correspondence e-mail: wbensch@ac.uni-kiel.de

Received 7 June 2000 Accepted 4 December 2000

The reaction of Cu and V in a Rb_2S_5 melt yields black crystals of rubidium dicopper vanadium tetrasulfide, $RbCu_2VS_4$. The structure is comprised of $[Cu_2VS_4]^-$ layers within the (010) plane which are separated by Rb^+ cations. The layers consist of a network of edge- and corner-sharing $[VS_4]$ and $[CuS_4]$ tetrahedra parallel to (010). The optical band gap was determined as 1.45 eV.

Comment

In recent years, we systematically investigated the quaternary system A/Cu/V/Q (with A = K, Rb, Cs; Q = S, Se), and prepared and characterized some new compounds with oneand two-dimensional structures, *e.g.* K₂CuVS₄ (Dürichen & Bensch, 1996), K₂CuVSe₄ (Rumpf, Tillinski *et al.*, 1997), KCu₂VS₄ (Bensch *et al.*, 1996) and KCu₂VSe₄ (Tillinski *et al.*, 1999).

The title compound, RbCu₂VS₄, is isostructural with KCu₂VS₄, KCu₂VSe₄, NaCu₂NbS₄ (Rumpf, Näther *et al.*,

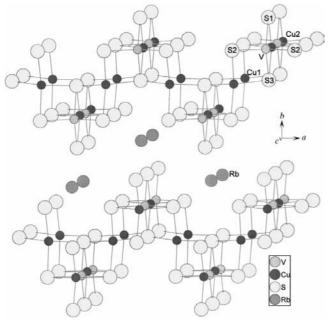


Figure 1

The crystal structure of $RbCu_2VS_4$ viewed along the *c* axis.

1997) and KCu₂NbS₄ (Lu & Ibers, 1991). The main feature of the layered structure is the existence of two-dimensional anionic $[Cu_2VS_4]^-$ sheets within the (010) plane which are separated by Rb⁺ cations. These layers are comprised of $[CuVS_4]_n^{2n-}$ chains of corner-sharing $[VS_4]$ and $[CuS_4]$ tetrahedra that are linked into the final sheets by $[CuS_4]$ tetrahedra sharing edges between $[VS_4]$ tetrahedra of neighbouring chains.

Three crystallographically unique metal atoms (Cu1, Cu2 and V) are found, each coordinated by four S atoms in a distorted tetrahedral environment. The average M-Sdistances are 2.30 (1) Å for M = Cu and 2.19 (1) Å for M = V, and lie within the normal range. The S-V-S angles are in the range 109.05 (12)–109.9 (3) $^{\circ}$, indicating only very weak distortion of the [VS₄] tetrahedra. In contrast, the S-Cu-S angles about the two independent Cu atoms indicate strong deviation from ideal tetrahedral geometry [103.03 (11)-120.4 (2)° for Cu1 and 102.0 (2)–114.67 (12)° for Cu2]. Due to the large differences of the Cu-S and V-S bond lengths, the connection of the [MS₄] tetrahedra via common edges must introduce strong distortion mainly affecting the [CuS₄] tetrahedra. The V-Cu distances are 2.703 (4), 2.709 (2) and 2.711 (4) Å, indicating no metal-to-metal interactions. Each Rb⁺ cation is coordinated by nine S atoms. The resulting polyhedra may be described as distorted tricapped trigonal prisms. The Rb-S distances range from 3.356 (9) to 3.713(2) Å, with an average value of 3.55(1) Å, in good agreement with the sum of the ionic radii. A UV-vis diffuse reflection spectrum was recorded in order to determine the optical band gap of RbCu₂VS₄; a value of 1.45 eV was found, which corresponds well with the black colour of the compound.

Experimental

RbCu₂VS₄ was prepared by the reaction of Rb₂S₅, Cu and V in the ratio 6:2:1. Rb₂S₅ was prepared from stoichiometric amounts of the elements in liquid ammonia under an argon atmosphere. The starting materials were mixed thoroughly in a dry box and sealed into a Pyrex-glass ampoule, which was evacuated at 1.0×10^{-3} mbar (1 mbar = 100 Pa). The ampoule was heated at 673 K for 6 d and cooled to

Table 1

Selected geometric parameters (Å, °).

V-S1	2.153 (7)	Cu2-S3	2.300 (4)
V-S2	2.186 (4)	Cu2-S2 ⁱⁱ	2.302 (3)
V-S3	2.232 (5)	Rb-S1 ⁱⁱⁱ	3.356 (9)
V-Cu2i	2.703 (4)	Rb-S3 ^{iv}	3.453 (4)
V-Cu1	2.709 (2)	Rb-S1 ^v	3.458 (10)
V-Cu2	2.711 (4)	Rb-S2 ^{vi}	3.486 (4)
Cu1-S2	2.290 (3)	Rb-S2 ^{vii}	3.645 (4)
Cu1-S3	2.307 (3)	Rb-S1 ^{vi}	3.713 (2)
Cu2-S1	2.288 (6)		
S1-V-S2 ^{viii}	109.88 (14)	S3 ^{ix} -Cu1-S3	106.7 (2)
S2viii-V-S2	109.9 (3)	V-Cu1-Vix	175.0 (2)
S1-V-S3	109.1 (2)	S1-Cu2-S3	102.3 (2)
S2viii-V-S3	109.05 (12)	S1-Cu2-S2 ⁱⁱ	111.79 (13)
S2-Cu1-S2ix	120.4 (2)	S3-Cu2-S2 ⁱⁱ	114.67 (12)
S2-Cu1-S3 ^{ix}	111.61 (10)	S2 ⁱⁱ -Cu2-S2 ^{vii}	102.0 (2)
S2 ^{ix} -Cu1-S3 ^{ix}	103.03 (11)	V ⁱⁱ -Cu2-V	177.58 (14)

Symmetry codes: (i) x, y, 1 + z; (ii) x, y, z - 1; (iii) $1 - x, \frac{1}{2} - y, z - \frac{1}{2}$; (iv) 1 - x, -y, z; (v) $1 - x, \frac{1}{2} - y, \frac{1}{2} + z$; (vi) 1 + x, y, z; (vii) $\frac{1}{2} - x, y, z - 1$; (viii) $\frac{1}{2} - x, y, z$; (ix) -x, -y, z. 293 K at a rate of 3 K h^{-1} . The resulting melt was washed with dimethylformamide and diethyl ether. Finally, the residue was dried in a vacuum.

Crystal data

RbCu₂VS₄ $M_r = 391.73$ Orthorhombic, Ama2 a = 7.382 (3) Å b = 18.187 (11) Å c = 5.413 (2) Å V = 726.7 (6) Å³ Z = 4 $D_x = 3.580$ Mg m⁻³ Data collection Stoe AED-II four-circle diffractometer ω - θ scans Absorption correction: empirical

(*XEMP* in *SHELXTL/PC*; Siemens, 1990) $T_{min} = 0.290$, $T_{max} = 0.345$ 1230 measured reflections 628 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.078$ S = 1.039628 reflections 46 parameters Mo K α radiation Cell parameters from 10 reflections $\theta = 13-24^{\circ}$ $\mu = 14.74 \text{ mm}^{-1}$ T = 293 (2) KBlock, black $0.08 \times 0.08 \times 0.07 \text{ mm}$

483 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 24.97^{\circ}$ $h = 0 \rightarrow 8$ $k = -21 \rightarrow 21$ $l = -6 \rightarrow 4$ 4 standard reflections frequency: every 120 min intensity decay: negligible $w = 1/[\sigma^2(F_o^2) + (0.0374P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

where $P = (P_o^- + 2F_c^-)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.95 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.66 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983) Flack parameter = -0.01 (3) Data collection: *DIF*4 (Stoe & Cie, 1992); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *CIFTAB* in *SHELXL*97.

This work is supported by the state of Schleswig-Holstein.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1402). Services for accessing these data are described at the back of the journal.

References

- Bensch, W., Dürichen, P. & Weidlich, C. (1996). Z. Kristallogr. 211, 933. Dürichen, P. & Bensch, W. (1996). Eur. J. Solid State Inorg. Chem. 33, 309–320.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lu, Y.-J. & Ibers, J. A. (1991). J. Solid State Chem. 94, 381-385.
- Rumpf, C., Näther, C., Jeß, I. & Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1165–1177.
- Rumpf, C., Tillinski, R., Näther, C., Dürichen, P., Jeß, I. & Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1187–1198.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconson, USA.

Stoe & Cie (1992). *DIF*4 (Version 7.09X/DOS) and *REDU*4 (Version 7.03). Stoe & Cie, Darmstadt, Germany.

Tillinski, R., Näther, C. & Bensch, W. (1999). Acta Cryst. C55, 1959-1961.